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Abstract: With the incremental popularity of ophthalmic imaging techniques, anonymization of
the clinical image datasets is becoming a critical issue, especially the fundus images, which would
have unique patient-specific biometric content. Towards achieving a framework to anonymize
ophthalmic images, we propose an image-specific de-identification method on the vascular
structure of retinal fundus images while preserving important clinical features such as hard
exudates. Our method calculates the contribution of latent code in latent space to the vascular
structure by computing the gradient map of the generated image with respect to latent space and
then by computing the overlap between the vascular mask and the gradient map. The proposed
method is designed to specifically target and effectively manipulate the latent code with the
highest contribution score in vascular structures. Extensive experimental results show that
our proposed method is competitive with other state-of-the-art approaches in terms of identity
similarity and lesion similarity, respectively. Additionally, our approach allows for a better
balance between identity similarity and lesion similarity, thus ensuring optimal performance in a
trade-off manner.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Many organizations now publicly release large amounts of medical data in order to promote
scientific research due to the growth of big data healthcare and retinal fundus photographs are
also widely used in public presentations or reports as examples for the clinical screening and
diagnosis of eye diseases [1,2]. Meanwhile, all contemporary health governing agencies and
standards including ISO 22600-1:2014, The US Health Insurance Portability and Accountability
Act (HIPAA) and European Data Protection Act incorporated measures to address patient privacy
and clinical photographs. As per HIPAA regulations, the medical record can only be considered
de-identified if any identifiable images are completely removed [3–5]. And Riis et al. also
introduce a relatively new ethical transgression which is intrusion into a patient’s bodily or
social integrity by clinical descriptions and photographs printed in textbooks or medical journals
[6]. Thereafter, the anonymization of the biometric information to prevent this leakage has
become a critical issue. Although synthetic images are sometimes used by researchers in public
presentations, they may not always provide the necessary details of specific pathologies that
clinicians require. The most effective approach is to utilize real patient data while anonymizing
the biometric information. The recognition of retinal biometric information is mainly based
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on the vascular structure of retina images [7]. Although non-vascular features are also used as
recognition features [8], the vascular structure of the retina remains relatively stable in one’s
lifespan [9]. This invariable stability and unforgettably has led researchers to primarily use
vascular structures as identifying features of biological information [10,11]. As a result, the best
way is that we can use real patient data in pubic presentations or reports while anomymizing the
biometric information by removing identification in vascular structure.

There have been many different methods for de-identification. For example, image blurring,
image masking, image inpainting and image obfuscation mentioned in [12–16]. However,
these methods may lead to the loss of crucial information on pathologies. Meanwhile, these
conventional methods turned out to be unreliable with the emergence of advanced algorithms
like image denoising [17], occlusion region recovery [18] and visual reasoning [19]. To prevent
attackers from inferring original data through the network, the differentially private and federated
learning methods were proposed as other aspects of healthcare data privacy protection in [20–22].
Although these frameworks may prevent membership inference attacks, they cannot ensure the
privacy of the original images. Some researchers use Generative Adversarial Networks(GANs)
to generate plausible images instead of real data to protect privacy [23,24]. Conventional
GAN models generate random images, limiting users’ ability to edit those images to their
requirements. To overcome this limitation, advanced de-identification GAN models now focus
on disentanglement in latent space [25]. Therefore, applying the disentanglement method for
removing identification from fundus images without affecting pathologies needs to be the primary
consideration.

For the aforementioned problems, this paper proposes a method for fundus image de-
identification on vascular structure while preserving the lesions such as hard exudates. In
a well disentanglement latent space, one latent code can control the generation of a specific
attribute [26]. The objective of this paper is to identify the latent code with highest contribution
score to vascular structure in generated fundus image, as the retinal biometric identity features
mainly exist in the retinal vascular structure [10,11]. As we want to preserve pathologies while
removing identification, we use the hard exudate and vascular structure as our research object.
Firstly, we train a fundus image generator based on StyleGAN3 [27]. In order to make the
more realistic generated fundus images and better disentanglement for pathologies and vascular
features, LPIPS [28]loss based on hard exudate detection and vessel segmentation are added into
the network. After the generation model is well-trained, we propose a gradient-based method to
determine the contribution score of each latent code to the vascular structure in the generated
fundus image. To achieve this, we compute the gradient of the vessel in the fundus image for
each latent code. Then we analyze the correlation between the gradient maps and the latent codes
by calculating the sum of pixels in the gradient map. The position of latent code with highest
contribution score to vascular structure in generated fundus image is determined according to the
sum of pixels in gradient map. The major contributions of this paper can be included as follows:

1) A de-identification method is introduced by performing manipulation on the latent code
with highest contribution score to identification while preserving pathologies.

2) Two LPIPS losses based on hard exudate segmentation and vessel segmentation are
incorporated into StyleGAN3 for more realistic synthetic images and better disentanglement
for pathologies and vascular features.

3) A gradient based method is proposed to locate the position of latent code that has the
highest contribution score to identity features in fundus images.

2. Related work

Biometrics in Fundus Image. The stability, uniqueness, and non-duplicability of the vascular
pattern make retinal recognition the most reliable biometric system [7]. The main elements of a
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fundus image captured by a digital fundus camera are the optic disc, blood vessels, and macula.
Blood vessels are the most distinctive retinal feature used in personal identification [29]. The
blood vessels in the retina create a branching pattern that looks like a tree, with the optic nerve
head acting as the root on the surface of the retina [12]. The unique blood vessel pattern in
the retina is used as a biometric identifier for personal identification. Changes in the rotation,
movement, and size of the retinal image may undermine the reliability and safety of the biometric
authentication process [9,30].

Local Editing with GAN. StyleGAN3 [27] has demonstrated a significant improvement in
both image generation and disentanglement capabilities. Many current local image editing
methods are based on StyleGAN structure [31–33]. The present research aims to discover a
vector direction in the latent space using pretrained classifiers, which can be adjusted to manage
specific attributes of an image, including age, gender, etc [34–36]. Meanwhile, StyleSpace
[37] demonstrates that it is feasible to achieve precise control by adjusting the value of a single
identified channel.

3. Methodology

Our paper presents a new method for local editing of the vascular structure region in fundus
images by manipulating the meaningful latent code with the highest contribution score to the
vessel. In this section, firstly, we introduce the training stage and LPIPS based loss function in
section 3.1. Then we describe channel locating method to find the latent code with the highest
contribution to vascular structure in section 3.2. Finally, we show how to apply de-identification
on real image in section 3.3.

3.1. Training stage

3.1.1. Generation network structure

The network structure proposed in this paper is based on StyleGAN3. During the training phase
of the network architecture, as depicted in Fig. 1, the network maps the input noise vector Z
to the W space through a linear connection layer and then maps it to the S space via the affine
transformation layer of StyleGAN3. Subsequently, the fundus image is generated by the decoder
of StyleGAN3. In training process, while retaining the original stylegan loss function, we
incorporate the LPIPS loss functions based on both vascular segmentation and lesion detection.
During each training iteration, the depth features of both the generated and ground-truth image
are extracted using the pre-trained vascular segmentation and lesion segmentation networks,
respectively. The LPIPS loss is then calculated from these extracted deep features, and it can
encourage the generator provides more realistic generated images and better disentanglement for
pathologies and vascular features.

3.1.2. Loss functions

General loss function in GAN model is the adversarial loss Ladv which defined on the generator
G and discriminator D of GAN:

Ladv = − EIGen,IGT [log(D(IGen, IGT ))]

− EIGen,IGT [log(1 − D(IGen, IGT ))]
(1)

where the target image IGT comes from ground truth dataset, and synthetic image IGen comes
from generator G. Since in this step we only need to implement the task of image generation, we
only need to focus on the difference between the generated data distribution and the real data
distribution, we don’t need paired dataset in loss function calculating.

Due to the fundus dataset is not sufficiently large, only the adversarial loss can not get the
desired performance. And inspired by the good performance of perceptual loss [38] in generation
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Fig. 1. The network structure consists of mapping layers that converts noise vector Z to
W and S space, and a decoder structure that can generate fundus images from latent space.
Additional loss functions are employed to encourage the generator provides more realistic
generated images and better disentanglement for pathologies and vascular features.

tasks, we use LPIPS [28] to measure the deep perceptual features. General LPIPS is trained on
16-layer VGG network [39] pretrained on the ImageNet dataset [40], which is trained for image
classification tasks and does not focus on retina fundus images. As we want to generate fundus
images with more clear vascular structure and retina pathologies, we customized the LPIPS loss
based on retina images tasks:

Llpips =
∑︂

j
mj(ϕj(IGen) − ϕj(IGT )) (2)

where ϕ is the network we use to extract the deep perceptual features of target image IGT and
synthetic image IGen, m calculates the distance score of features and averages it from j layers.

In the paper, firstly, we train the vessel segmentation network based on U-Net [41]. Then we
apply our vascular segmentation model to the generated images and randomly selected images
from the test set, and select 8 feature layers respectively as the input for LPIPS, where 4 layers
are the output after the downsampling layer of U-Net encoder, with the other 4 layers being the
feature layers after the upsampling layer of decoder in U-Net. As such, the loss function will
bring the vascular structure of generated images closer to that of real vessels. At the same time,
to make the hard exudate more realistic, we apply the same method as in vascular segmentation,
based on the trained U-Net model for lesion segmentation. Then, we employ cosine distance to
measure the distance score. Finally, we add all loss functions together for training.

Llpips = LPIPSvessel(IGen, IGT ) + LPIPSlesion(IGen, IGT ) (3)

Loss = λlpipsLlpips + λadvLadv (4)

3.2. Locating latent code with highest contribution to vascular structure

Semantic manipulations can be perform by moving the latent code in the latent space along
the direction of semantic areas. However, modifying the latent codes in the latent space
is associated with spatial entanglements, which often lead to modifications of the image’s
irrelevant characteristics and features. To address this issue, recent researches on disentangled
representations [42,43,35,37] believe that spatially disentangled manipulation of fine-grained
controls can be achieved by modifying a single channel of the manipulation style. A latent
representation is considered to be completely disentangled if each of its dimensions is responsible
for one visual attribute. We explore the latent space as shown in Fig. 2. The projector that inverts
real fundus image to latent space is provided by Karras et al. [27]. The generator is part of
StyleGAN3 structure [27]. A pre-trained vessel segmentation network based on U-net [41] is
applied to obtain the vascular mask. We compute the Jacobian matrix in masked region based on
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the vascular mask. The Jacobian matrix of each latent code is composed of the gradients in the
forward propagation process, which means the contribution of the latent code to the vascular
region [44]. Therefore, we analyze the correlation between the vascular structure and the latent
codes by calculating the sum of pixels in each gradient map. The position of the latent code
with the highest contribution score to the vascular structure in the generated fundus image is
determined by the sum of the gradient map.

Projector

W+

Projector

Decoder

Generator

S

Fig. 2. An overview of proposed structure for locating the latent code with highest
contribution score to vascular structure. The structure consists of a projector to invert real
fundus image to latent space, a generator to reconstruct the image from latent space. Then
we can analyze the contribution score of latent code to vascular structure from the Jacobian
matrix (gradient map).

3.2.1. Latent space

Because of the latent space, StyleGAN3 has good disentanglement for different attributes. In
the generator structure of StyleGAN3, many types of vectors regarded as latent spaces. For
example, a latent code z ∈ Z is given as input, the mapping layers f : Z → W, and the affine
layers A : W+→ S. At first, the latent code z ∈ Z is a stochastic normally distributed vector,
always called Z space. After the fully connected mapping layers, z is transformed into a new
latent space W. The latent code w ∈ W is claimed to have better disentanglement of different
attributes [45]. In affine transformation layers of StyleGAN, the input vectors are denoted as
W+ space, and the output vectors are denoted as S space. In [37], the experiments demonstrate
that the style code s ∈ S can better reflect the disentangled nature of the learned distribution
than W and W+ spaces. In order to manipulate real images, it is necessary to invert them into
the latent space. There are two main approaches, one is to optimize the latent vector [45,46]
and the other is to train an encoder based on reconstruction loss [47,48]. We adapt the latent
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optimization algorithm of Karras et al. [27] to invert real images into W+ space. and then
mapping the W+ space to S space.

3.2.2. Jacobian matrix

Image after manipulation xedit can be defined as Eq. (5), which is obtained by moving the
latent code in the S space based on vector n⃗. Here, n⃗ means selecting the channel with highest
contribution to vascular structure, so we can define n⃗ as a special unit vector that has only one
value of 1 and all others are 0, the length of n⃗ is the dimensions of S space. α denotes editing
strength.

xedit = G(s + αn⃗) (5)

According to the approach proposed by Zhu et al. [36], we perform a first-order Taylor
expansion on Eq. (5). Then, following their notation, the first-order Taylor approximation of xedit

performed at point s can be written as:

G(s + αn⃗) = G(s) + αJs ⊙ n⃗ + o(α) (6)

The Jacobian matrix Js is composed of gradient map (Js)k =
(∂G(s))k
(∂s)k , where k is the k − th

dimension of S space. k can also be mapped as the index of layer and channel (l,c) according to
the structure of S space in StyleGAN3. S space has K dimensions in total. We denote the shape
of generated image as H × W, the shape of gradient map of each latent code (Js)k is also H × W,
then the shape of Js is K × H × W.

From Eq. (6) The error between original image and edited image can be written as:

ϱ = |G(s + αn⃗) − G(s)| ≤ |αJs ⊙ n⃗| + |o(α)| ≈ |αJs ⊙ n⃗| = α |Js | ⊙ n⃗ (7)

because α is a constant value and n⃗ means selecting the channel, so we can bring them out of the
absolute value operation. In Eq. (7) ϱ denote the error, | denote the absolute value. o(α) is an
infinitesimal number. Intuitively, after the manipulation on images, the desired result G(s) should
be significantly changed in semantic area. From Eq. (8), as n⃗ is a special unit vector that represent
which channel is selected in S space, we need to find the channel which has maximum gradient
value in the Jacobian matrix of semantic area M. In order to perform vectorized calculations, it is
necessary to expand the M into K dimensions as MK . k is the selected channel, which means the
position in n⃗ with value 1. Here, the operation ⊙ means element-wise Hadamard product.

arg max
k
ϱMK ≈ arg max

k
α |Js ⊙ MK | ⊙ n⃗ = arg max

k
α |
∂(G(s) ⊙ MK)

∂s
| ⊙ n⃗(0<k ≤ K) (8)

3.2.3. Calculating the contribution score list

After the network model is well-trained, we start to analyze which latent code has the highest
contribution score to biometric feature in vascular structure. Firstly, we generate image IGen of
size H × W from StyleGAN3. For each channel in S space, the shape of gradient map (Js)k with
respect to latent code is H × W, so the Jacobian matrix Js of output image with respect to all
style code in S space is K ×H ×W. K is defined as the number of channels in S space. And then
we use a segmentation method on output image to get the semantic mask M, which has same
size of H × W as IGen. In order to locate the index of channel with maximum contribution score,
we can compute all the gradient maps of latent codes in S space according to the principle of
Eq. (8). Since the gradient map is obtained by computing the gradients of the output image with
respect to the latent code, based on the vessel mask region, each latent code’s gradient map is
also an H × W image. Each gradient in the gradient map represents the contribution of that latent
code to the vessel structure pixel in the output image. Therefore, the sum of the entire gradient
map of one latent code can be considered as the overall contribution of that latent code to the
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entire vessel structure. So, we sum up all the gradient values in the gradient map to represent
the contribution score of that latent code to the vessel structure in the output image as shown in
Eq. (9). Then we can get a contribution list R, which means the contribution score to vascular
structure of each channel. Instead of calculating all pixel values in gradient map, we calculated
the top | |M | |0 values of the largest. Because we only focus on vascular mask, if we count all
pixels the result will be affected by region of non-interest. | |M | |0 is the amount of pixels in mask
M. K is the dimensions of S space, and is also the length of n in Eq. (8).

Rk =

∑︁ | |M | |0
i=1 sort(vec( ∂(I

Gen⊙M)

∂sk
))

| |M | |0
(1 ≤ i ≤ ||M | |0) (9)

3.3. Vascular structure manipulation

For each style code, we have its contribution score to biometric features on vascular structure.
We project T images to style spaces using projector provided by Karras et al. [27], and thereafter,
calculate the contribution list for each image. To ensure that the collected positions of style codes
are not impacted by individual noise and are consistent across all images, we calculate the mean
of all images as shown in Eq. (10). The number of images used for projection is represented by
the symbol T , the value of T is specifically defined as 1000 in the paper.⎧⎪⎪⎪⎨⎪⎪⎪⎩

k = arg max
k

(
1
T

T∑︂
i=0

Ri)k(0<k ≤ K)

k ⇒ (l, c)

(10)

According to Eq. (10), we need find the latent code in position k , which has highest contribution
score. So the contribution list can be sorted from high to low, and then the latent code with
highest contribution score is selected as manipulation target. To make it easier to understand k
can be mapped as the index of layer and channel (l, c) based on the layers and channels of S
space in StyleGAN3 network structure.

After finding the general position of latent code that has highest contribution score to vascular
structure, we can perform manipulation on real image as shown in Fig. 3 based on Eq. (5). We
can project the real image to style space using the projector, then change the value of latent code
in position (l, c). However, if we directly add the editing strength α on s, the maximum and
minimum value in S space will be changed. In this way, it will make the S space inconsistent
with pre-trained StyleGAN3. Therefore, we modify the Eq. (5) to Eq. (11).⎧⎪⎪⎪⎨⎪⎪⎪⎩

Snew =s ⊙ (1 − n⃗) + [(1 − α)s ⊙ n⃗ + αµm ⊙ n⃗]
=s − α(µm − s) ⊙ n⃗

Ide−ID = G(Snew)

(11)

where Ide−ID denotes the image after manipulation, which will be without original identification.
α is the editing strength, which is limited to [0 ∼ 1]. The operation ⊙ means element-wise
Hadamard product. 1 is a vector whose values are all 1. µm is the mean of style space in
ground-truth data distribution, which is from the trained Gn⃗ is a special unit vector that has value
1 at position (l, c), and all others are 0.

3.4. Evaluation metrics

In our experiments, we employ Frechet Inception Distance (FID) [49], Learned Perceptual Image
Patch Similarity (LPIPS) [28] and Sliced Wasserstein Difference (SWD) [50]to measure the
distance between synthetic and real data distribution. Accuracy, Precision, Recall and F1 score
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Fig. 3. Manipulation on real image for de-identification on the index of layer and channel
with highest contribution score. The difference between output and input image can be
controlled by editing strength α.

are applied for human perception score. FSSIFT , FSSR, RROI and AMS metrics are used to
measure the similarity between original images and de-identification images. FSSIFT , FSSR focus
on the ID similarity by detecting the features and vascular bifurcations. RROI and AMS focus on
lesion similarity by calculating the change in pathology region.

AMS Attributes Matching Score (AMS) [51] focus on the whether we change the region of
pathologies. AMS use a binary classifier pretrained on hard exudates detection to decide the
labels of image pairs, if the labels are the same, we regard them as matching. In our experiments,
large AMS score means image pairs still keep same lesion before and after modifying.

RROI RROI compute the ratio of the distance between original and edited images in the
region of interest, over the same quantity with the region of ’disinterest’(call it RROI [52]).
Concretely, where M ∈ [0, 1] H × W × C is an H × W semantic mask of the region of interest, 1
is a 1 dimension tensor, and X, X

′ ∈ RN×H̃×W̃×C̃ are the batch of original and edited versions of
the images respectively. A larger RROI indicates a smaller degree of alteration for non-vascular
regions, which in this paper means that more pathological information is preserved.

RROI(M,X,X′) =
1
N

N∑︂
i=1

| |M ∗
(︁
Xi − X′

i
)︁
| |

| | (1 −M) ∗
(︁
Xi − X′

i
)︁
| |

(12)

FID, LPIPS and SWD The Fréchet inception distance (FID) is a metric used to assess the
quality of images created by a generative model. The FID compares the distribution of generated
images with the distribution of a set of real images ("ground truth"). The Learned Perceptual
Image Patch Similarity (LPIPS) compute the average distance between each generated image
and all images in the test set. LPIPS essentially computes the similarity between the activations
of two image patches for some pre-defined network. This measure has been shown to match
human perception well. Sliced Wasserstein Difference (SWD) aims to capture the natural notion
of dissimilarity between the outputs of task-specific classifiers, and SWD directly measures the
degree of support between the target sample and the source sample.

FSSIFT and FSSR SIFT [53] Feature Similarity(FSSIFT) is effective in identifying similarities
between images, which can detect, describe, and match local features in images. It performs
admirably in image recognition applications. The matching score means the numbers of good
match in all detected features. SuperRetina [54] Feature Similarity (FSSR) use SuperRetina
network to identify the similarity between images. SuperRetina is a network of keypoints detector
and descriptor for retinal image matching, which focus on specific vascular points such as
crossover and bifurcation that are more stable and repeatable. We perform registration on pair of
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images based on the results of keypoints detection. The matching score means the similarity of
pair of image.

Precision, Recall, Accuracy, F1 To measure the performance of human perception score,
we apply precision, recall, accuracy and F1 score. Precision measures the number of positive
predictions that truly belong to the positive class, whereas recall quantifies the number of positive
class predictions made out of all positive examples in the dataset. Accuracy represents the
number of correctly classified data instances over the total number of data instances. F1 Score is
needed when you want to seek a balance between Precision and Recall. As shown in Eq. (13),
True positive TP is defined as correctly classified data, whereas true negative TN is defined as
correctly rejected data. Similarly false positive FP denotes the incorrectly predicted data and
false negative FN denotes the incorrectly rejected data.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

Dice /F1 =
2 · Precision · Recall
Precision + Recall

(13)

4. Experiments

4.1. Dataset

We carry out our experiments on a publicly available dataset named ODIR-5k [55], which is
collected by Shanggong Medical Technology Co., Ltd. from different hospitals/medical centers
in China. In these institutions, fundus images are captured by various cameras in the market, such
as Canon, Zeiss and Kowa, resulting into varied image resolutions (width: [250-5184],height
:[188-3456]). The original dataset has 8000 images. There are 1000 images in the testing dataset
and 7000 images in the training dataset. Due of inconsistent illumination, several images are of
low quality. To overcome this, we use EyeQ [56] to grade the quality of fundus images, which
divides them into three levels (Good, Usable, and Reject). Using this strategy, we choose 3000
images from the training set and 500 images from the testing set that have been classified as
’Good’ or ’Usable’ for our experiments.

4.2. Implementation details

4.2.1. Data preprocessing

The images in ODIR-5k dataset are gathered from multiple clinics using a variety of cameras
over an extended period of time so they have different resolutions. Before training, we need to
ensure that the input images have the same resolution. To do this, we first detect the edge of the
fundus in the entire image and then apply center crop preprocessing method based on the center
of the edge. After center crop, we remove the black areas of the image that do not contain any
information. We also employ online data augmentation approaches, such as left-right flipping,
randomly rotating the image within a range of −30◦ to 30◦, to improve the generalization ability
of image generation and prevent overfitting. During each training period, we use one of these
augmentation approach randomly.

4.2.2. Experiment setting

In the paper, all the experiments are conducted on a single NVIDIA RTX A5000 GPUs with
24GB memory using PyTorch implementation. We initialize the learning rate with 0.0025 for
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G(·) and 0.002 for D(·). For optimization, we use the Adam optimizer with β1 = 0.0, β2 = 0.99.
We empirically set λlpips = 0.6, λadv = 0.4.

4.3. Evaluation and results

4.3.1. Results of synthetic images

For visual evaluation, we show some images generated by StyleGAN3 with our customized
LPIPS loss in Fig. 4. The first column of the Fig. 4 shows the fundus images of normal people,
while the others show the fundus images of patients of hard exudates. As we can see, synthetic
images are visually comparable to real images. In Table 1, we show the quantitative evaluation
results. For objective quality evaluation, we employ FID and LPIPS as metrics on 1K testing
images to measure the distance between the distribution of synthetic data and real data. For
subjective quality evaluation, we conduct a user study to evaluate the results. We randomly chose
200 images which consists of 100 synthetic images and 100 real images, then two professional
ophthalmologists in Klinik und Poliklinik für Augenheilkunde, Technische Universität München
are asked to determine which images are synthetic. And then we calculate the Accuracy, F1
score, Precision, and Recall. From the results in Table 1, we know that all the evaluation score
are close to 0.5. This means that even for professional doctors there is only a 50% possibility to
predict which one is real and which one is synthetic. This also implies that synthetic images
might be highly confusing even for experienced clinicians.

Fig. 4. Generated fundus images by StyleGAN3. The first image is a normal fundus image
without any pathology. The second to fourth images are patient image with pathologies.

Table 1. Image Quality Assessment

Objective Quality Metrics Human Perception Score

FID(↓) LPIPS(↓) Acc Recall Precision F1

9.382 0.457 0.525 0.527 0.480 0.503

4.3.2. Results of de-identification

Due to the good spatial disentangled ability of StyleGAN3 in the latent space, we can control a
certain attribute of the generated image by manipulating a specific channel in the latent space.
After the training process, we use Jacobian matrix to detect the channel position of style code
having the highest contribution to biometric features as described in Section. 3.2.3. Afterward,
we observe a list of channels (c) sorted from high to low based on the contribution list. Then we
modify the style code in the first position of the list. Our editing results are shown in the third
column of Fig. 5. The gradient maps with highest contribution score are shown in the second
column. The objective of this paper is to perform de-identification of the image without changing
its lesion as much as possible. From the experiments in [26] a well disentanglement latent space,
one latent code can control the generation of a specific attribute. Therefore, when editing an
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image in latent space, manipulating the whole S space is not necessary. Instead, only the style
code with highest contribution score can provide quite good performance.

Reference Ours StyleSpace LowRank ReSefaGradientMap

Fig. 5. Comparison results of different methods on image manipulation. The first column
is the reference image. The second column is gradient map of latent code with highest
contribution score. The third column shows the images after manipulation by our method.
The fourth to sixth columns show the results of other manipulation methods.

We also show the comparison with state-of-the-art image local editing methods: LowRank
[36], ReSeFa [35] and StyleSpace [37]. The comparison are performed on the same pre-trained
StyleGAN3 model with same environment. From the results shown in Fig. 5. All the image
manipulation method can modify the target image in a certain direction. StyleSpace always keep
the pathologies, when editing the vascular structure, but as shown in third column of Fig. 5, it
always change only a small region. LowRank and ReSefa can change more detail in vascular
structure, but LowRank will change the lesion and region of interest. ReSefa can keep the
region of interest area, but the manipulation of the vascular structure make the vascular structure
disappear. If we only anonymous the vascular, it is working well, but the generated data can not
be used in some medical image processing tasks, such as vessel segmentation. Our results are
shown in the second column, from the images, we can see that our method can edit the vascular
structure a lot and keep the pathologies unchanged compared with other methods.

In Fig. 6, we show the visual presentation of FSSR (Feature Similatiry of SuperRetina) [54]
on the edited results of LowRank, Resefa, StyleSpace and our method. FSSR can detect the
keypoints(cross-over and bifurcation) in fundus images. Based on this property, we can use
feature matching methods on the keypoints, then we determine the similarity by calculating the
percentage of keypoints that match between the original and edited images, based on the total
number of keypoints detected in the original image. As shown in Fig. 6, LowRank can modify a
lot on the images, but it almost miss all the keypoints in the lesion area. ReSefa is similar as
LowRank in vascular structure, but is much better in lesion area. StyleSpace keeps high similarity
except editing region, but the problem is the editing region is always small. If we want to change
whole vascular, it is not working well. From our result in Fig. 6, we can see that our method can
change the vascular structure as much as possible while keeping lesion as unchanged as possible.

To perform a more comprehensive and quantitative comparison between the proposed method
with different local editing approaches, including StyleSpace, LowRank, ReSefa. We set the
editing strength α in Eq. (11) as 0.5. Finally, we use FID, LPIPS, FSSIFT , FSSR, RROI and
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LowRank

ReSefa Ours

StyleSpace

Fig. 6. Visual presentation of FSSR on results of image local editing methods. In each
sub-figure the left is the edited image and the right is the reference image. The green lines
show the matched bifurcation between original and de-identification image.

AMS metrics on 1K testing images. The quantitative results are shown in Table 2. FID and
LPIPS show the distance between generated images and real images. They indicate the realism
of synthetic images, the smaller the value, the more realistic it is. After manipulation of target
images, the FID and LPIPS score are 26.952 and 0.156 as shown in Table 2, from the FID and
LPIPS score in Table 2, we can know our method have the comparable image quality score
with StyleSpace, and much better than LowRank and ReSefa. FID and LPIPS results indicate
that our method do not changes the data distribution remarkably. We also give the quantitative
comparison results of ID similarity. FSSIFT indicates the SIFT feature similarity of an image
before and after it has been edited. FSSR indicates the structure similarity which can detect the
keypoints of vascular structure in fundus images including crossover and bifurcation. After image
manipulation, the ID similarity scores of FSSIFT and FSSR should be as small as possible because
there should be a clear distinction in similarity between the images before and after editing. But
the preservation of pathologies after editing the vascular structure is as crucial as ID similarity.
RROI shows similarity of regions other than the vascular structure, so the smaller the RROI,
the better the result. AMS shows whether the original image and the image after editing have
different pathological labels, the smaller the AMS, the better the preservation of pathologies.

Table 2. Quantitative comparison with different local editing approaches.

Image Quality ID Similarity Lesion Similarity

FID(↓) LPIPS(↓) FSSIFT (↓) FSSR(↓) RROI(↑) AMS(↑)

StyleSpace [37] 23.604 0.123 0.676 0.597 0.441 0.990

LowRank [36] 46.486 0.255 0.073 0.206 0.160 0.776

ReSefa [35] 37.542 0.241 0.191 0.274 0.230 0.948

ours 26.952 0.156 0.162 0.271 0.472 0.986

As shown in Table 2, StyleSpace perform very bad in ID similarity, because it always change
only a small area, so StyleSpace is not good at de-identification task. LowRank perform well in
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de-identification but it change both vascular and lesion. Although ReSefa perform well both in
de-identification and lesion keeping, it is not better than our method. And the most important
factor in ReSefa is that it makes some vascular structure disappear. The utilization of ReSefa will
have a substantial impact when attempting to apply de-identification techniques to the vessel
segmentation dataset. The proposed method in this paper outperform ReSefa both in ID similarity
and lesion similarity. Compared with StyleSpace and LowRank, our method perform well in a
trade-off manner, because ID similarity of the images and the lesion similarity are negatively
correlated. Each evaluation of quantitative metrics individually has certain limitations. We show
the similarity trade-off score in ablation study section.

4.3.3. Ablation study

LPIPS Loss Functions From left to right columns, we represent the loss function from the
training process in Fig. 7. The first column is the original StyleGAN3 results, We can identify
the image as a retinal image based on its shape and texture, but the detail processing is quite
sloppy, especially in delicate regions like the vascular anatomy. The second column is the result
using LPIPSvessel and the third column is the result using LPIPSlesion. From the results, we can
see that when we add the corresponding LPIPS loss function, the generated image will focus
more on these related attributes. Finally, images in last column show that the network with both
LPIPS loss perform well in vascular structure and lesion generation. The quantitative evaluation
are tabulated in Table 3. Evidently, the proposed loss function based on LPIPS significantly
improves the quality of generated images.

Similarity Trade-off Score We have discussed various evaluation metrics for different local
editing methods in Table 2. These similarity evaluation methods are mainly divided into two
parts: ID similarity and Lesion similarity. In this paper, we talk vascular structure similarity
as ID similarity. When we change the vascular structure too much, the lesion will be affected
because sometimes vascular structures may pass through the pathological area. So ID similarity
and lesion similarity have a negative correlation. In our de-identification experiments, the lower
ID similarity score means the better de-identification results. Conversely, the higher Lesion
similarity score, the better lesion keeping results. So, when we focus too much on ID similarity,
lesion similarity will definitely be greatly impacted, and vice versa. Therefore, we need to find a
trade-off in our attention to both similarities. Given that every metric in Table 2 is evaluated on
different scales, normalization is essential for obtaining unbiased results. Then we evaluate the
impact of different levels of attention on each similarity according to Eq. (14). Here, IDsimilarity
and Lesionsimilarity are constant values from Table 2.

IDsimilarity =
norm(FSSIFT ) + norm(FSSR)

2

Lesionsimilarity =
norm(RROI) + norm(AMS)

2

SimilarityScore =
1.0 − η

IDsimilarity
+ ηLesionsimilarity

(14)

where η represents how much attention we give to Lesion similarity. We can observe from Fig. 8
that Lowrank perform well when the attention to lesion similarity is low and the attention to
ID similarity is high, however StyleSpace work badly. Resefa is more steady than stylespace,
whose performance is too readily influenced by η. The effectiveness of our method continuously
improves as the importance of lesion similarity increases.

Editing Strength Different editing strengths are a trade-off for image quality. The degree of
modification for the vascular structure varies when we choose different editing intensity. Due to
the widespread distribution of vascular structures throughout the fundus image, they are deeply
intertwined with other features in fundus image. Even in the high-dimensional disentangled latent
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LPIPSlesionw/o LPIPS LPIPSvessel LPIPSboth

Fig. 7. Visual presentation of LPIPS loss function. The first column show the results of
original StyleGAN3. The second column show results with LPIPS loss based on vessel
segmentation. The third column show results with LPIPS loss based on lesion segmentation.
The last column show the results with both LPIPS loss.

Fig. 8. Similarity Score shows the variation in performance scores of different methods as
the attention on the lesion is increased.
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Table 3. Comparison on whether to use LPIPS loss

FID(↓) LPIPS(↓) MSE(↓) SWD(↓)

StyleGAN3 15.279 0.557 0.406 47.109

StyleGAN3+LPIPSvessel 12.380 0.540 0.363 43.837

StyleGAN3+LPIPSlesion 12.171 0.480 0.347 42.014

StyleGAN3+LPIPSvessel+lesion 9.382 0.457 0.283 39.776

space, it is imperative to consider the entanglement between the blood vessels and other features
of the fundus image. Particularly, if the vessels traverse pathological regions, the pathological
region is more or less affected when we edit the vessel structure. For these reasons, if we choose
a high editing intensity, the editing will influence not just the vascular structure but also other
areas of the image.

From Fig. 9, we can see that as the magnitude of the editing strength α increases, the changing
in the vascular structure becomes more and more obvious, but the lesion is also increasingly
affected as well. In the interface stage, we can manually set the editing strength for the vascular
structure based on our needs and use similarity calculation and pathological detection methods
to determine whether the edited image meets our requirements.

Reference ꭤ=0.2 ꭤ=0.4 ꭤ=0.6 ꭤ=0.8 ꭤ=1.0

Fig. 9. As α increases, the vascular changes are significant. But when the vessels pass
through a lesion, it will also make lesion changed more or less.

As discussed in Sec. 3.4, each evaluation metrics can provide a measurement of image quality,
and main focus of each metric is different. As the editing strength α become larger, FID and
LPIPS become larger, but this means that the image quality they are focusing on is getting worse.
RROI and AMS will become smaller with α become larger, it indicates the image quality focused
on by them is becoming worse. FSSIFT and FSSR are also become smaller, but it indicated the ID
similarity is becoming better, because the new images after editing are becoming more different
from original one. To make every evaluation metric in same scale, we normalize the different
metrics between [0− 1]. In Fig. 10, we show the impact of different editing strength α on various
evaluation metrics results. As the editing strength increases, the difference between the edited
image and the original image is also increasing. The data distribution of the generated image
and the real image are increasing, so the FID and LPIPS are increasing, which means the image
realism is getting worse. The difference of lesions between edited images and original images are
also increasing, which means the lesions similarity is becoming worse, so the RROI and AMS
metrics decrease. However, with the increasing of α, the difference of vessels become larger, the
ID similarity decrease, it means the performance of de-identification is improving.

It is important to note that these results are a mean of multiple images and may require further
adjustment for individual images to ensure the editing strength α can meet specific requirements.
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Fig. 10. As the editing strength increases, the increase of FID and LPIPS metric show that
image quality is getting worse, the decrease of RROI and AMS show that quality in pathology
region is getting worse, the decrease of FSSIFT and FSSR show that the performance of
de-identification is getting better.

5. Conclusion

In this paper we propose a de-identification method on vascular structure of fundus images, which
can preserve the pathologies when removing the biometric features. In this work, the LPIPS
losses based on hard exudates detection and vessel segmentation were adopted into our method.
However, the challenge that was not addressed in this part of the study was differentiation between
safe and critical vascular segments which might effect the prognosis of disease related with
vessels. This challenge will be addressed in our future work together with our collaborating
ophthalmologists within a qualitative research scheme.
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